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~ABSTRACTr

We propose,a class of bounded influence robust regression estimators with

conditionally unbiased estimating functions given the design. Optimal estimators

are found within this class. Applications are made to generalized linear models.

An example applying logistic regression to food stamp data is discussed.
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1. INTRODUCTION

In this paper we study robust estimation in a model with explanatory

variables X (X Yi) are assumed to be independent and identically distributed

with joint distribution Po(dylx)F(dx). We consider M-estiators defined

implicitely by the equation

n
2 4(Y IX. .) = 0.

i=l

In (1.1). 8 belongs to a subset Q of RP and ' takes values in IRP. Usually. 'p is

required to be Fisher-consistent. i.e..

Sf 4(y.x,8) P,(dylx)F(dx) = 0 for all 0. (1.2)

which implies consistency in the usual sense under weak regularity conditions. In

this paper we require a stronger form of (1.2):

f P(y.x,0)P,(dylx) = 0 for all x and all 0. (1.3)

which we will call conditional Fisher-consistenc'.

In the linear model with symmetric errors, essentially all Fisher-consistent

estimators which are optimal in some sense automatically satisfy (1.3). This is

not the case with asymmetric errors or for generalized linear models. Stefanski,

et al. (19S6) have investigated robust estimators satisfying (1.2) (with F the

empirical distribution function of the {Xi) but not (1.3). However, conditional

Fisher consistency is an appealing concept because it does not involve the

distribution of the explanatory variables {X 1 }, which is independent of the

parameter of Interest. Moreover, these estimators have the advantages of being

computationally simpler in certain cases (Section 3) and less affected by the

estimation of nuisance parameters (Section 4).

Recall some general results and definitions from robust statistics (see

Hampel et. al.. 1986). The influence function of an M-Lstimator is

IC (y.x.0) = D_ (0) P(y.x.o); (1.1)

o4
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where D4,(0) ff -p(y~x.P3) P,(dyix)F(dx)Il6  (1.5)

Under regularity conditions, N11  (0N 0) is asymptotically normal with

covariance matrix

-1D 1P(9) W4,(0) D (q)', VU'P) =VU'P.O). (1.6)

where W 1P(0) =E['P(6)\P(O) T (1.7)

Finally we consider the self-standardized influence

-- 2

y. x N;0 T y.x

which measures the maximal Influence an observation can have on a linear

combination of interest standardized by the standard deviation of this linear

2
combination. Integrating (1.S) shows that s(4') > p. For other measures of

influence, see for example Giltinan, et. al (19S6). The usual goal of bounded

influence estimation is to minimize the asymptotic covariance (1.6) subject to a

bound on the measure of influence, in this case (1.8). As in Giltinan, et. al

(19S6). optimal estimators satisfying this goal depend on the measure of

influence.

2. LINFAR REGRESION WITH ASYNNMIC FRRORS

The purpose of this section is to show that the differences between (1.2) and

(1.3) are relevant also in linear regression if the errors are not symmetric. We

consider the model

Y :0 + xT6 + ui' (2.1)
1 0 1 1

where (ui} are independent and identically distributed with common density g

,having no point of symmetry. The usual design matrix is assumed to be of full

rank. The vector 9 is of length (p-I). The m.-st important proposals for

%
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M-estimators in linear regression are the Mallows and Schweppe forms:

T TT T
u(Xe)= w(x) SO(y-%o-x 6)(1 xT)T (2.2)

4 s(Y.X0)= w(x) P((y-o-xTG) / W(X))(1 xT)T .  (2.3)

Here w(x) is a scalar weight function and wp is a scalar function. Without

additional assumptions on g. 0  is not identifiable, but the following result

gives conditions for consistency of 8. For related results, see Carroll (1979).

THEOREM 2.1

i) For the Mallows-form (2.2), there is a constant r such that
'4

(Y.xo+r .1..... . ) satisfies (1.3).

ii) If the x. are symmetrically distributed with center c E IRp an-d if w(X-c) -

W(-X+c). then there is a constant T such that for the Schweppe form (2.3)

(y.XO+T ,81 .. . .8 ) satisfies (1.2). but in general not (1.3).

0 p

PROOF: i) is obvious by defining T as the solution of f P(u-T)g(u)du = 0. In

case ii) define T as the solution of
,.4

f w(x) po((u-r)/w(x)) g(u) F(dx)du = 0.

This is just (1.2) for the first component of 4,. For the other components we

observe that

If x w(x) ip((U-T)/W(X)) g(u) F(dx)du =

fS(xj-c )w(x) -f((U-T)/W(X)) g(u) F(dx)du = 0

by symmetry, so (1.2) holds. Equation (1.3) does not hold in general, because the

solution r of

f .P((u-r)/w(X)) g(u)du = 0

depends in most cases on x. 0

Thus, the Mallows form has the advantage of being a conditionally unbiased

estimating equation even when the (xi) or {ui) are not syTnmetrically distributed. ,

.'. .' 4 - .. o - ..... .. ... - ........ - . %... *., .
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3. CENERALIZED LINEAR MODELS

We consider the canonical form of generalized linear models. where
,-,T

P,(dylx) = exp{y xT - G(x T0) - s(y)} p(dy). (3.1)

If g is the derivative of G. the likelihood score function is

R(yx.) = {y-g(x T0)}x. (3.2)

Note that (3.2) satisfies (1.3). so that the score is conditionally unbiased.

Because R is proportional to x. the influence is unbounded, i.e.. s2 (P

We are looking here for M-estimators satisfying (1.3) and s(P) b which

minimize V(\P) in some sense. In analogy with a general principle for constructing

optimal robust estimators (Hampel, et. al (1986). Section 4.3), we consider the

following 4 function:

1

'pcond(Y x..O.B) = d(y.x.G.B) wb( ld(y.x.O.B)I(xTB- Ix)) x. (3.3)

where

d(y.x,O.B) = y-g(xT 0) - c(x T, b/(x T B- x) )

and wb(a) = Hb(a)/a.

where H b is the Huber function Hb(a) = min(a.b) (a > 0).

We work within the context of the Schweppe-form. although related results are

obtainable for the Mallows-form as in Stefanskl. et al (1986). The mjor change

is that wb in (3.3) factors into two parts. The first depends only on x and is of

the form w1((xT B -x) /2). The other depends only on

T T T-l1 1/2
d(y.x.0) = y - g(x 0) - c(x O,b/(x B x) )

and is of the form w2(Id(y.x.0)I).

The function c and the matrix B in (3.3) will be chosen so that the side

%,%
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conditions (1.3) and S(4cond) = b are satisfied By the definitiw~i of '1cond'

(1.3) holds if and only if for all 13 and all a p- C..

aa
.f(y-g(3)-c(3.a)) wa(ty-g(/3)cU.a)bexp(y 13--(1)-S(y)) U6<, = 0. (3.41)

First we discuss the existence of a solution to (3 4).

LEMMA 3.1 For any a > 0 and 3. there is a solution c c(1.a', to (3.4).

PROOF: For fixed y. 3. a. the ftuTw..Jnn

c - (y - g(3) - C) Wa (y -- g(V ) - ci)

is continuous, bounded and monotone nonincreasing with 1iLts a. Hence the

existence follows from dominated convergence and the intermedLnue value theorem.

A practical advantage here is that often the function c can be calculated in

closed or almost close form. This is particularly important compared to (1.2).

where c is a vector (depending only on 0) whose computation is quite difficult,

see Stefanski, et. al (1986). Section 2.4. Here are two examples where c(p,a) can

be calculated explicitly.

Exanle 3.1 : Logistic Regression Here p puts equal mass at 0 and 1, S(y)--O, aid

G(P) = en(l + exp(3)}. Write p = exp(p3)/(l + exp(p)) and q = 1-p. It is easily

checked that

ap/q -p if P( 0 and a ( q

c(P.a)= q - aqp if 3 > 0 and a < p
0 otherwise

satisfies (3.4).

Example 3.2 NegatIve Exponential Regresslon Here p is Lebesgue-measure on

[0.). G(3) = -tn(-3). s(y) = 0 and 3 < 0. Two cases occur.

If the bound a is large, the Huberization in 1cond is one-sided (for large

. .. . , # -- . ..,.'. . .- ,- -. . : -. ,. ... .. . . .. ' p. ... .-. ,- .... . . . .
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y's only), for small a's both large and small ys will be Huberized. It can be

checked by straightforward calculations that the cutting point between the two

cases is given by the equation e2(a = 1 + P3a. so that Pa Z - 0.797. In the former

case c(pa) = -P3 times the smaller solution of exp(x+3a-1) = x and in the latter

case c(p,a) = --1 (1 + log(ja/(exp(pa) - exp(- 3a)))).

Turn now to the matrix B. It follows from the definition of cod that

S{pcond) = b provided

Eo['Pcond(Y.x..B) 'cond(YXO.B)T] = B. (3.5)

Equation (3.5) is used to define B=B(O). B(O) depends also on the distribution F

of the explanatory variables. A necessary condition for (3.5) is b > p. but we do

not know if it is also sufficient.

We have the following optimality result for Pcond

THEOREM 3.1 : Suppose that for a given b (3.5) has a solution B(O). Then P

minimizes tr(V(#)V(ond) I ) among all p satisfying (1.3) and

sup ICIP V(cond) - ICI, b2 .(y,x)

Theorem 3.1 is a corollary of the following analogy to Theorem I of

Stefanski, et al. (1986). Note that Theorem 3.2 below also applies to any kind of

model with explanatory variables.

THEPREM 3.2 : Let R(yx.8) be the likelihood score function. Define the score

func t ion

1

=cond(YXO)  (E-c)min 2(l,b /(-c)B-(-c)), (3.6)

where c = c(x.G) and B = B(O) are assumed to exist and satisfy

E(4cond(y.x,) [x) = 0

E(sP cond(Y.X.O) 'Pcond(YX.e) T B.

Then (3.6) minimizes tr(V(#)V(,Pcond) ) among all p satisfying (1.3) and

P V-.
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sup P V(4cond - 1 %  b2
n (y. x)

With the exception of multiplication by a constant matrix. 'cond is unique almost

surely. o

PROOF OF TUMREM 3.2 The proof is almost identical to tha of Theorem 1 in

Stefanski, et al. (1986), once one notes that for any conditionally unbiased score

function 4,

E c(x,) N(y.x.O)

= E{c(x.0) E(,P(y.x.O)jx)) =. 0

The computational complexity of the conditional unbiased estimator is not

particular to the model (3.1). For instance, if we have a generalized linear

model with arbitrary link function h, we have to replace in (3.3) d(yx.O.B) by

h'(xT0)fY - g(h(xT0)) - c(h(xT),b/((xTB-)/ 2 I h'(xT 0 ) 1))}.

where c(13.a) is still defined by (3.4).

In applications, the distribution F of the (xi} is unknown. It is common to

replace F by its empirical distribution. From (3.3) and (3.5), this means that we

solve

N

I ' cond(yXiON.BN) = O, (3.7)1=1c

IN T T* T ^-1 1/2
N- 2 xixtT v(x 1 

0N' b/(xl B N xi) ) = BN '  (3.8)

where

2 2v(P3.a) = ,f(y-g(P3)-c(13,a)) w (y.P3,a)exp(yi-C(P3)-S(y)) p(dy). (3.9)

w(y.13.a) = Ha (y-g(3) - c(P.a)l) / ly-g(3) - c(3.a)l (3.10)

In many applications, improved protection against outliers through higher

breakdown points can be achieved by the use of redescending 4 functions, see

Rousseeuw (1984). In equations (3.3), (3.4) and (3.10) the Huber function Hb

could be replaced by any of the redescenders such as Hampel's three part function

4, or the Tukey biweight. The calculation of c(Pa) is of the same complexity as

e.e

" "' " "% ',''. .":,',.¢,;.',.':<:. ,. -.,. ,.-,..-'.., .'.,.''.' .. . .. ,L . , . . ."..-..'..'..'..-, --'--3 , .'-, ', '. '. . ".- -- "--.,
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with the Huber function. The breakdown properties of such estimates remain to be

studied.

4 : THE EFFECT OF ESTIMATING THE MATRIX B

In the last section we derived the estimator defined by (3.7)-(3.8) as an

approximation to the optimal estimator which uses 4 ,cond(Y'x O.B(O)). We may

consider (3.7) and (3.8) as an M-estimator for both 9 and a nuisance parameter B.

The \-function defining this M-estimator is

(4,T T T
(\cond(YXGB) . Yx(x,O.B) ) . where
X~xO.) =x T T8 xT-lx 1/2

= x x v(x . b/(x B x) ) - B.

The influence function of this estimator is (compare (1.4) and (1.5))

IC (y,x,O,B) = D,() ( ( (xO.B )T)T . (.1)
\oPY*. B) X(,B Dlx@ , (4.1)y'

where

a a
ap0 E 0V\cond(Y .x,1. B)J )3=0 A E 0 Pcond (y~x.O.A) ]JA=B(O)

D 'x = (-4.2)
a a
a E 0x(x,,B) V=O -A E0 [x(x.e.A) IA-B(O)

By the definition of Pcond and c(i3,a) in (3.3) and (3.4). cond(yx, OA) satisfies

(1.3) for arbitrary A. Hence, E0pcond(Yx ,O.,A)] = 0 for all A and the upper

right block of D is zero. This means that the 9 part of the influence function

for (3.7) and (3.8) is equal to

-. Eo[\Pcond(y.X.,B)] -1 cond(Yx. ,B). (4.3)

On the other hand, the influence function for the optimal o(Y.X.9) =

4cond(Yx.O.B(G)) is also equal to (4.3) because by the same argument.

Vp

*-C......

." -" " " "~. - -" ' %.. -- "
- U . r, *,, . , ., ,, - --
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D (0) E _ Ee[od(yx.0,B)J and(Y ..,A)] I -B(6)
o a n  = aoA A=B Mo

1 E 
1condY,.

We have thus shown

THEOREM 4.1 The 9 part of the influence function in the case that 9 and B are

simultaneously estimated by (3.7) and (3.8) is the same as the influence function

in the case that 0 alone is estimated using the optimal 'o(Y.X.O) =

,pcond(y.'x.,B(O)). In particular, the asymptotic covariance matrix of 9N is the

same in both cases. 0

REMARKS:
" (T]

i) 9n and Bn are not asymptotically independent: E [Pcond X 0 by (1.3). but

- Eo[x(x,_.B)] =0 s 0 in general.
ap I1.)j3

ii) Because in linear regression with symmetric errors X does not depend on 0. an

analogue to Theorem 4.1 is obvious. In addition, estimation of the scale of the

errors does not change the asymptotic covariance either, and ; is asymptotically
n

* independent of all nuisance parameters.

iii) From the finite sample interpretation of the influence function. (4.3) means

the following: to the first order of approximation the change in n caused byn

adding or deleting an observation at (x.y) is

0i'Pod~lxl N8x = Icond(Y'X' 0N' N)'

i.e. the change in has approximately no effect on the change in 0 N' In this

sense the estimator (3.7)-(3.8) is reasonably stable.

(iv) For the Fisher-consistent estimator (2.12)-(2.13) of Stefanski. et al.

(1986). there Is no analogue of Theorem 4.1. The 9 part of the influence function

is in general a linear combination of PBI' Eo[PBI I x] and Eo[4,B I,'BIxT]-B because

....................
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all blocks in D are in general different from zero.

5: EXAMPLES

We illustrate the conditional Fisher-consistent estimators on two examples of

logistic regression, the first considered by Stefanski, et al. (1986).

Example 5.1 : The Food Stamp Ita

The response is whether or not one participates in the federal food stamp

program. Two dichotomous predictors are available, tenancy and supplemental

income. An additional predictor is log(l + monthly income). There were 150

observations, with 24 participating in the program. One observation, #5, is known

to be highly influential on the ordinary analysis, with another, #66, slightly

less influential. We used the Huber 4 function with two values of b. and in one

case contrasted the use of the conditionally unbiased score function and the

biased score function with c(13,a) 0- . The latter choice was used by Stefanski,

et al. (1986) because of numerical problems in enforcing unconditional Fisher

consistency (1.2). In Table 1, we list the results of this analysis. We also

list the analysis one would obtain if one used a Hampel P function with bend

points (6,14,32). see Hampel, et al. (1986, pages 66-67). For computational

convenience, rather than solving (3.4). in defining the function c(P.a) we have

chosen to use the same formula as in Example 3.1, which should not affect the

results too severely.

In this example, the major difference is not among the biased and conditional

Fisher-consistent estimates, but rather among the choices of b (maximum likelihood

corresponds to b = w). With decreasing b the importance of supplemental income as

well as the weights for cases #5 and #66 decrease and the importance of
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log(l+monthly income) increases.

'S

Example 5.2 : Skin Vaso-constriction data

These data have appeared elsewhere in the context of robustness, see Pregibon

(19SI). The response is the occurrence of vaso-constriction in the skin of the

digits and is regressed on the logarithms of the rate and volume of air inspired.

In our work, we took Rate = 0.30. see Pregibon (1981).
32 "

This data set is inherently unstable. As previous authors have shown, once

,- one deletes observations #4 and #18. almost perfect discrimination is possible.

Our analyses are listed in Table 2. We used the Huber weight function only, and

have selected various values of b. When we tried to use the Hampel \P function,

observations 4 and 18 were immediately given weight 0. in which case even

computing the maximum likelihood estimates is delicate.

A biased analysis uses a Huber function with b = 6.408, but with c(13,a) E 0.

When we used this value of b in our conditional Fisher-consistent score, we find

that observations 4 and 18 are barely downweighted and the resulting analysis

looks very much like the usual likelihood analysis. As we move b to 5.5 and 5.0,

observations 4 and 18 are given very little weight, and parameter estimates and

standard errors change dramatically. In this example too the value of the

sensitivity b seems to be most important, and we recommend to successively

decrease b and see how estimates, standard errors and weights change.

_% %

-4',. .. . ,. - .-. ... , .. . . . .. .. . .. . .. .. . , . . . ... . . . . . . .. .. . .
'A% % % = ° ", ' , ' . . '". . b , t . - ° € . - . . . ." -, . . . . . . ,,° - °. .
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6 :ON USIONS

Conditionally unbiased score functions are appealing because their definition

does not depend on the distribution of the predictors (x). In the context of

robustness, the resulting estimators have an analogous optimality theory to that £

already developed for unconditionally unbiased score functions. In addition.

conditionally unbiased score functions are often far easier to define. Although

ignoring the bias and setting c E 0 turned out rot to matter much in the examples

considered, one can construct situations where this bias is large. With our

estimator, we avoid this problem with little additional complexity.
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TABLE 1

This is a reanalysis of the food stamp data. For selected observations, the
weights wb in equation (3.3) are computed.

Huber(7) Huber(7) Huber(5.5) Hampel(6.14,32)
MLE c(P,a)--O Conditional Conditional Conditional

Unbiased Unbiased Unbiased

Intercept 0.93 4.26 4.51 5.49 6.00
(1.62) (2.55) (2.54) (2.66) (2.76)

Tenancy -1.85 -1.85 -1.78 -1.76 -1.80
(.53) (.54) (.54) (.51) (.54)

Supplemental
Income 0.90 0.75 0.74 0.62 0.70

(.50) (.52) (.51) (.52) (.52)

Log(I+MI).
MI=Monthly

Income -0.33 -0.89 -0.93 -1.10 -1.18
(.27) (.43) (.43) (.45) (.47)

Weights
#5 0.21 0.16 0.13 0.0
#66 0.76 0.60 0.41 0.54

N

N%

..........................

"@D'.. ,-.-.-'..'.., % ... . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ..- . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .".." .'_. ... ..... " .-.-.- -.. .-.
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This is a reanalysis of the skin vasoconstriction data. For selected
observations. the weights w b in equation (3.3) are computed.

Huber(6.41) Huber(6.41) Huber(S.5)
?4LE c(P3.a)={)O Conditional Conditional

Unbiased Unbiased

* ~erer-2.92 -5.71 -2.98 -6.41
(1.29) (2.45) (1.35) (2.84)

low,(volume) 5.22 9.13 5.27 9.98
(1.93) (3.73) (1.93) (4.38)

lovn(rate) 4.63 8.09 4.67 9.85
(1.79) (3.31) (1.86) (3.82)

Weights
#4 0.38 >.SO 0.25
#18 0.44 >.80 0.29

1 71 "h
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